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18.1 Introduction to Simulation   
⤷Computer Simulation Model Basics

A computer simulation model is a computer representation that mimics 
the behavior of a real-world system.

 Simulation models can be used to obtain virtual statistical samples to 
estimate the performance of a system that involves uncertainty.

 Simulation models are often preferred when analytical solutions are 
difficult or impossible to find.

Typical situations where simulation can help involve complex systems 
whose performance needs to be assessed under various decisions and 
scenarios being considered. http://www.traffic-simulation.de/

 In order to develop a simulation model, several relevant questions need 
to be answered. We will deal with some such questions in this course 
over the next few classes.

http://www.traffic-simulation.de/


18.2 Simulation Applications
⤷ Important Questions

1. How to generate random numbers?
2. How to generate random observations from a probability 

distribution?
3. How to construct a model?
4. How to advance time?
5. How to prepare a simulation program?
6. How to validate a model?
7. How long should a simulation run?
8. How many simulation runs are needed?
9. How to perform statistical analysis of the results obtained from 

simulation runs?



18.3 Generating Random Numbers
⤷ How to Generate Random Numbers?

 Standard approach to produce random numbers has two steps.
1.Produce a sequence of statistically independent random numbers 

that are distributed uniformly within a finite range.
2.Process and transform these uniform random numbers into a 

sequence of sample points from any desired distribution.
 Let us focus on the first stage.
• Most computer systems have functions that allow easy generation of 

random numbers.
• In Microsoft Excel and in MATLAB, rand() returns a random number 

that is uniformly distributed between 0 and 1.
• Successive random numbers generated by rand() function can be 

considered to be mutually independent samples from 𝑼𝑼 𝟎𝟎,𝟏𝟏 . We 
often denote such numbers by letter 𝒓𝒓



18.4 Inversion Method
⤷ Principle of the Inversion Method

 Let us consider the simplest example: 0/1 Bernoulli Distribution.
We can use a function such as 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 to generate a series of 

random numbers 𝑟𝑟~𝑈𝑈 0,1 .
The challenge is to use this series of numbers to generate another 

series that contains only 0s and 1s such that the probability of any 
number being 1 is 𝑝𝑝 and 0 is 1 − 𝑝𝑝. In other words, we want to 
simulate a Bernoulli distributed random number 𝑏𝑏 from each 
𝑟𝑟~𝑈𝑈 0,1 .

A simple way is to check if the number 𝑟𝑟 is in 0,1 − 𝑝𝑝 . If so, we set 𝑏𝑏
to 0, else we set it to 1. Note that the probability of 𝑟𝑟 being in 
0,1 − 𝑝𝑝 is 1 − 𝑝𝑝.

 Inversion method extends this idea to other distributions.



18.4 Inversion Method
⤷ Procedure of Inversion Method

As stated earlier, the PDF of 𝑟𝑟 can be written formally as, 

𝑓𝑓𝑅𝑅 𝑟𝑟 = �1, 𝑖𝑖𝑖𝑖 0 ≤ 𝑟𝑟 ≤ 1
0, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 .

We observe that for any random variable 𝑌𝑌, the CDF, 𝐹𝐹𝑌𝑌 𝑦𝑦 is a non-
decreasing function with 0 ≤ 𝐹𝐹𝑌𝑌 𝑦𝑦 ≤ 1. So can we match this 𝐹𝐹𝑌𝑌 𝑦𝑦
with the uniform random numbers 𝑟𝑟 that we have already produced?

 Specifically, if we set 𝐹𝐹𝑌𝑌 𝑦𝑦 = 𝑟𝑟, then we can calculate 𝑦𝑦 = 𝐹𝐹𝑌𝑌−1 𝑟𝑟 . 
This implies that we first plot the CDF of 𝑌𝑌. Then we draw a 𝑈𝑈[0,1]
random number 𝑟𝑟. Then we find the inverse image of 𝑟𝑟 on the 
vertical axis, which will give us the corresponding value of 𝑦𝑦 which 
has a distribution given by CDF 𝐹𝐹𝑌𝑌.



18.4 Inversion Method
⤷Inversion Method Illustrated on the CDF



18.4 Inversion Method
⤷ Inversion Method’s Logic

We need to convince ourselves that the inversion method actually 
“works”.

Consider random variable 𝑌𝑌, and any two real numbers 𝑎𝑎 and 𝑏𝑏.
 If the method works, then for any 𝑎𝑎 and 𝑏𝑏, it should give the value of 
𝑃𝑃 𝑎𝑎 ≤ 𝑌𝑌 ≤ 𝑏𝑏 correctly, 

That is, the method should be able to yield a random number between 𝑎𝑎
and 𝑏𝑏 with probability 𝑃𝑃 𝑎𝑎 ≤ 𝑌𝑌 ≤ 𝑏𝑏 .

3-Minute Activity: Spend a minute by yourself and then discuss for 2 
minutes with your neighbors to check if indeed the method “works”.

Be prepared to explain your answer to the class.



18.4 Inversion Method
⤷ Inversion Method Example1

Problem: Emails into your inbox follow a Poisson process with 𝜆𝜆 = 3
/hour. Generate a sequence of random numbers to simulate the arrival 
process.

Solution: Inter-arrival times (𝑇𝑇) in a Poisson process follow an 

exponential distribution. 𝑓𝑓𝑇𝑇 𝑡𝑡 = �𝜆𝜆 exp −𝜆𝜆𝜆𝜆 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ≥ 0
0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 < 0.

 𝑟𝑟 = 𝐹𝐹𝑇𝑇 𝑡𝑡 = ∫0
𝑡𝑡 𝑓𝑓𝑇𝑇 𝑥𝑥 𝑑𝑑𝑑𝑑 = ∫0

𝑡𝑡 𝜆𝜆 exp −𝜆𝜆𝜆𝜆 𝑑𝑑𝑑𝑑 = 1 − exp −𝜆𝜆𝜆𝜆 .

Thus, −𝜆𝜆𝑡𝑡 = ln 1 − 𝑟𝑟 . So, 𝑡𝑡 = −ln 1−𝑟𝑟
𝜆𝜆

= 𝐹𝐹𝑇𝑇−1 𝑟𝑟 .

We can directly use this formula to calculate inter-arrival times 
between emails using 𝑟𝑟~𝑈𝑈 0,1 .

Furthermore, note that 1 − 𝑟𝑟 = 𝑟𝑟2~𝑈𝑈 0,1 . So we can further simplify 
the formula as 𝑡𝑡 = 𝐹𝐹𝑇𝑇−1 𝑟𝑟 = −ln 𝑟𝑟

𝜆𝜆
.



18.4 Inversion Method
⤷ Inversion Method Example1 (cont.)



18.4 Inversion Method
⤷ Inversion Method Example 2

Problem: Consider a 6-mile road between mile markers 4 and 10. 
The PDF of the location of next accident is given by the diagram 
below. Simulate the location 𝑋𝑋 where the next accident will occur.



18.4 Inversion Method
⤷ Inversion Method Example2 (cont.)

Solution: 𝐹𝐹𝑋𝑋 𝑥𝑥 =

0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 < 4
1
9
𝑥𝑥 − 4 𝑓𝑓𝑓𝑓𝑓𝑓 4 ≤ 𝑥𝑥 < 7

1
3

+ 2
9
𝑥𝑥 − 7 𝑓𝑓𝑓𝑓𝑓𝑓 7 ≤ 𝑥𝑥 < 10
1 𝑓𝑓𝑓𝑓𝑓𝑓 10 ≤ 𝑥𝑥

.

• 𝑟𝑟~𝑈𝑈[0,1]. 

• If 𝑟𝑟 ≤ 1
3
, then 𝑟𝑟 = 1

9
𝑥𝑥 − 4 , and 

hence 𝑥𝑥 = 9𝑟𝑟 + 4.

• Else, 𝑟𝑟 = 1
3

+ 2
9
𝑥𝑥 − 7 , and hence 

𝑥𝑥 = 1
2
9𝑟𝑟 + 11 .



18.4 Inversion Method
⤷ Example 2: Alternate Approach

 In general, there can be many different ways of generating a random 
number with the same distribution.

Multiple random numbers from 𝑈𝑈[0,1] can also be used if generating 
them is not too computationally intensive.

For example 2, an alternate approach is as follows:

•Step 1: Generate 2 random numbers 𝑟𝑟1~𝑈𝑈 0,1 and 𝑟𝑟2~𝑈𝑈 0,1 .

•Step 2: If 𝑟𝑟1 < 1
3
, 𝑥𝑥 = 3𝑟𝑟2 + 4, else 𝑥𝑥 = 3𝑟𝑟2 + 7.



18.4 Inversion Method

⤷ Inversion Method for Discrete RVs

When simulating a discrete random 
variable 𝑋𝑋, with PMF and CDF 
given respectively by 𝑝𝑝𝑋𝑋 𝑥𝑥 and 
𝐹𝐹𝑋𝑋 𝑥𝑥 , from a single 𝑟𝑟~𝑈𝑈 0,1
variable, find the smallest value 𝑥𝑥
such that  𝐹𝐹𝑋𝑋 𝑥𝑥 = ∑𝑦𝑦=𝑥𝑥1

𝑥𝑥 𝑝𝑝𝑋𝑋 𝑦𝑦 ≥ 𝑟𝑟.

• E.g. if 𝑝𝑝𝑋𝑋 𝑥𝑥 = 𝑝𝑝 1 − 𝑝𝑝 𝑥𝑥−1 for 𝑥𝑥 = 1,2, …, then 𝐹𝐹𝑋𝑋 𝑥𝑥 = 1 − 1 − 𝑝𝑝 𝑥𝑥

• So 𝑥𝑥 = ln 1−𝑟𝑟
ln 1−𝑝𝑝

, where 𝑎𝑎 denotes the smallest integer greater than or 

equal to 𝑎𝑎.



18.5 Relationships Method 
⤷ Principle of the Relationship Method

The idea is to take advantage of some known relationship between 
this random variable and one or more other random variables.

Example: Simulating a binomial random variable.
Binomial probability mass function gives the probability of 𝑘𝑘

successes in 𝑛𝑛 Bernoulli trials.
 Simulate 𝑛𝑛 Bernoulli trials, i.e., obtain 𝑛𝑛 values of a random variable 

which takes value 1 with probability 𝑝𝑝 and value 0 with probability 
1 − 𝑝𝑝.

Then count the number of successes in 𝑛𝑛 trials, which gives a single 
value of random number drawn from binomial distribution.



18.6 Rejection Method
⤷ Principle of the Rejection Method

This method can be used to generate random values from any 
distribution that (1) takes values in a finite range, and (2) has a bounded 
PDF/PMF (i.e., PDF/PMF does not go to infinity at any value of the 
random variable).

 Let 𝑋𝑋 be a random variable that follows these two conditions; let 𝑐𝑐 be 
the maximum value taken by its PDF 𝑓𝑓𝑋𝑋 𝑥𝑥 ; and let all values of 𝑋𝑋 with 
non-zero PDF be contained in interval 𝑎𝑎, 𝑏𝑏 .

Use the following three step procedure to generate random values from 
distribution 𝑓𝑓𝑋𝑋 𝑥𝑥 using the rejection method.

• Step 1: Enclose the PDF 𝑓𝑓𝑋𝑋 𝑥𝑥 in the smallest rectangle that fully 
contains it and whose sides are parallel to the 𝑥𝑥 and 𝑦𝑦 axes. This 
rectangle will have a width 𝑏𝑏 − 𝑎𝑎 and height 𝑐𝑐.



18.6 Rejection Method
⤷ Procedure of Inversion Method

• Step 2: Use two random numbers, 𝑟𝑟1, 𝑟𝑟2~𝑈𝑈 0,1 , and transform using 𝑎𝑎, 𝑏𝑏, 
and 𝑐𝑐 to get a point 𝑥𝑥1, 𝑥𝑥2 = 𝑎𝑎 + 𝑟𝑟1 𝑏𝑏 − 𝑎𝑎 , 𝑟𝑟2𝑐𝑐 inside the rectangle.

• Step 3: If this point is below the PDF, the 𝑥𝑥-coordinate of this point gives 
you the simulated value of random variable 𝑋𝑋. Otherwise, reject this 
point and return to step 2.



18.6 Rejection Method

⤷Rejection Method Example

Let us look at the highway accident example again.
• Step 1: This PDF can be enclosed in a rectangle whose length is 

𝑏𝑏 − 𝑎𝑎 = 10 − 4 = 6 and height is 𝑐𝑐 = 2
9
.

• Step 2: Let 𝑟𝑟1, 𝑟𝑟2 = 0.34,0.81 be the two random numbers being 
drawn from 𝑈𝑈 0,1 . The corresponding point in the rectangle will be 

𝑥𝑥1,𝑦𝑦1 = 4 + 6 ∗ 0.34,0.81 ∗ 2
9

= 6.04,0.18 .
• Step 3: Since this point is above

 (6.04, 0.11) it will be rejected. Let 
 the new point be 𝑟𝑟1, 𝑟𝑟2 = 0.41, 0.15
 leading to 𝑥𝑥1,𝑦𝑦1 = 6.46, 0.033 , so
 the sample value 𝑥𝑥 = 6.46 will be  accepted.



18.6 Rejection Method

⤷ Rejection Method: Pros & Cons

The rejection method is very general.
As long as the PDF satisfies the two aforementioned conditions, 

this method can be used.
The PDF does not need to have a closed form mathematical 

expression either.
The downside is that sometimes many rejections are needed 

before simulating each random value.
The expected number of trials until an accepted value is found 

equals 𝑐𝑐 𝑏𝑏 − 𝑎𝑎 (Why?).   



18.7 Method of Approximations 
⤷ Principles and typical examples

Approximate a complicated distribution using another which is easier 
to simulate using one of the earlier three methods.

 Some approximations can be sophisticated.

E.g. Simulating a normal distribution by applying Central Limit 
Theorem (CLT).

Generate k random variables, each from 𝑈𝑈 0,1 and take sum. 𝑍𝑍 =
𝑟𝑟1 + 𝑟𝑟2 + ⋯+ 𝑟𝑟𝑘𝑘.

Each 𝑟𝑟 variable has mean = 1
2

and standard deviation = 1
12

.

 So mean of 𝑍𝑍 is 𝑘𝑘
2

and standard deviation is 𝑘𝑘
12

.



18.7 Method of Approximations 
⤷ Applications and Extensions

For large values of 𝑘𝑘, 
𝑍𝑍−𝑘𝑘2

𝑘𝑘
12

is approximately normal with mean 0 and 

standard deviation 1.
 So a random variable 𝑋𝑋 from any normal distribution with mean 𝜇𝜇 and 

standard deviation 𝜎𝜎 can be generated as 𝜇𝜇 +
𝑍𝑍−𝑘𝑘2

𝑘𝑘
12

𝜎𝜎.

Another common type of approximation is to approximate a 
complicated CDF using a simpler CDF (such as a piecewise linear CDF) 
and then 

• using inversion method, or 
• using a rejection method.



18.8 Method Comparison

We have seen 4 different methods so far (Inversion, Relationships, 
Rejection, Approximations) for generating random numbers from a 
given probability distribution.

Obviously they have some pros and cons each.
Compare the four methods and list as many pros and cons as you 

can.

4-Minute Activity: Spend 2 minutes by yourself and then discuss for 2 
minutes with your neighbors.

Be prepared to explain your answer to the class.



18.8 Method Comparison
⤷ Comparison of Random Number Generation Methods

Method Advantages Disadvantages Typical Applications

Inversion 
Method

- Simple and intuitive 
principle

- Exact if the inverse CDF is 
available

- Works well for many 
standard distributions

- Inverse CDF often 
not available in 
closed form

- Numerical 
inversion can be 
computationally 
expensive

- Exponential distribution
- Geometric distribution
- Any distribution with a 

closed-form inverse CDF

Relationship 
Metho

- Efficient by exploiting 
known relationships 
between distributions

- Avoids complex 
mathematics

- Easy to implement once 
relation is known

- Limited to cases 
with known 
relationships

- Not a universal 
approach

- Generating Binomial from 
Bernoulli

- Generating Chi-square, t, 
or F distributions from 
Normal



18.8 Method Comparison
⤷ Comparison of Random Number Generation Methods (cont.)

Method Advantages Disadvantages Typical Applications

Rejection 
Method

- Does not require 
inverse CDF or closed 
form

- Flexible for complex or 
nonstandard 
distributions

- Can be inefficient if 
rejection rate is 
high

- Requires a suitable 
proposal distribution

- Normal distribution (via Box–
Muller or rejection variants)

- Gamma distribution
- Complicated PDFs without 

closed forms

Approximatio
n Method

- Useful when exact 
simulation is infeasible

- Flexible, can be 
combined with other 
methods

- Often faster in practice

- Introduces 
approximation error

- Accuracy depends on 
approximation 
technique and 
parameters

- Approximating Normal via 
Central Limit Theorem (CLT)

- Approximating complex CDFs 
with piecewise linear functions

- Simulation in large-scale Monte 
Carlo where efficiency matters



Chapter 18 Simulation Generating Random Numbers • Brief summary

Objective :

Key Concepts ：
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