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Chapter 18 Simulation Generating Random Numbers

m 18.1 Introduction to Simulation

= 18.2 Simulation Applications

= 18.3 Generating Random Numbers

= 18.4 Inversion Method

= 18.5 Relationships Method

= 18.6 Rejection Method

= 18.7 Approximation Method

= 18.8 Method Comparison
https://www.youtube.com/watch?v=iHzzSao6ypE

https://www.youtube.com/watch?v=Suugn-p5C1M
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18.1 Introduction to Simulation RN [l i 5 0%

v, Computer Simulation Model Basics &2/ TONGJI SEM

m A computer simulation model is a computer representation that mimics
the behavior of a real-world system.

m Simulation models can be used to obtain virtual statistical samples to
estimate the performance of a system that involves uncertainty.

m Simulation models are often preferred when analytical solutions are
difficult or impossible to find.

m Typical situations where simulation can help involve complex systems
whose performance needs to be assessed under various decisions and
scenarios being considered. http://www.traffic-simulation.de/

m In order to develop a simulation model, several relevant questions need
to be answered. We will deal with some such questions in this course
over the next few classes.
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18.2 Simulation Applications RN [l i 5 8

L Important Questions &/ TONGJISEM

1. How to generate random numbers?

How to generate random observations from a probability
distribution?

How to construct a model?

How to advance time?

How to prepare a simulation program?

How to validate a model?

How long should a simulation run?

How many simulation runs are needed?

How to perform statistical analysis of the results obtained from
simulation runs?

N
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18.3 Generating Random Numbers RN il i 285

L How to Generate Random Numbers? &/ TONGJISEM

m Standard approach to produce random numbers has two steps.
1.Produce a sequence of statistically independent random numbers
that are distributed uniformly within a finite range.
2.Process and transform these uniform random numbers into a
sequence of sample points from any desired distribution.
m Let us focus on the first stage.
* Most computer systems have functions that allow easy generation of
random numbers.
° In Microsoft Excel and in MATLAB, rand() returns a random number
that is uniformly distributed between 0 and 1.
* Successive random numbers generated by rand() function can be
considered to be mutually independent samples from U|[0,1]. We
often denote such numbers by letter r
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18.4 Inversion Method TN il i 5 4%

L Principle of the Inversion Method &/ TONGJISEM

m Let us consider the simplest example: 0/1 Bernoulli Distribution.

m We can use a function such as rand( ) to generate a series of
random numbers r~U|[0,1].

m The challenge is to use this series of numbers to generate another
series that contains only 0s and 1s such that the probability of any
number being 1 is p and 0 is 1 — p. In other words, we want to
simulate a Bernoulli distributed random number b from each
r~U[0,1].

= A simple way is to check if the number r is in [0,1 — p]. If so, we set b
to 0, else we set it to 1. Note that the probability of r being in
10,1 —p]is 1—p.

m /nversion method extends this idea to other distributions.
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18.4 Inversion Method

N Tl B £ 55
L Procedure of Inversion Method &2/ TONGJISEM

m As stated earlier, the PDF of r can be written formally as,

1, if0<r<1

fr(r) = {O, fotherwise '

m We observe that for any random variable Y, the CDF, Fy(y) is a non-
decreasing function with 0 < Fy(y) < 1. So can we match this F, (y)
with the uniform random numbers r that we have already produced?

m Specifically, if we set Fy(y) = r, then we can calculate y = F, (7).
This implies that we first plot the CDF of Y. Then we draw a U[0,1]
random number r. Then we find the inverse image of r on the

vertical axis, which will give us the corresponding value of y which
has a distribution given by CDF F;.
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18.4 Inversion Method I 36 4555

Linversion Method lllustrated on the CDF &/ TONGJISEM

between QO and |

Random-number generator
used to obtain a value

-

'y

o
q:‘. P e e — — — — —

This is the sample value of the
desired random variable
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18.4 Inversion Method RN [ i a A

4 Inversion Method’s Logic & 1oNGJisEM

m We need to convince ourselves that the inversion method actually
“works”.

m Consider random variable Y, and any two real numbers a and b.

m If the method works, then for any a and b, it should give the value of
P(a <Y < b) correctly,

m That is, the method should be able to yield a random number between a
and b with probability P(a <Y < b).

ﬁ m 3-Minute Activity: Spend a minute by yourself and then discuss for 2
minutes with your neighbors to check if indeed the method “works”.
m Be prepared to explain your answer to the class.
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18.4 Inversion Method TN il i 5 4%

% Inversion Method Example1 &2/ TONGJISEM

m Problem: Emails into your inbox follow a Poisson process with 1 = 3
/hour. Generate a sequence of random numbers to simulate the arrival
process.

m Solution: Inter-arrival times (T) in a Poisson process follow an
Aexp(—At) fort =0
0 fort <0’

exponential distribution. f(t) = {

mr =Fq(t) = fot fr(x)dx = fot/lexp(—/lx) dx = 1 — exp(—At).

—In(1- _
n; D Fr 1(7")-

m We can directly use this formula to calculate inter-arrival times
between emails using r~U[0,1].

m Furthermore, note that (1 —r) = r,~U|[0,1]. So we can further simplify

the formula as t = F, 1(v) = —lr;(r).

mThus, —At =1In(1 —1r). So, t =
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18.4 Inversion Method TR il i &5 4

L Inversion Method Example1 (cont.) 2 TONGJISEM

Fy (1)

-
——
—
|
"N
»
-

N i
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18.4 Inversion Method TN il i e
&2 TONGJISEM

L Inversion Method Example 2
m Problem: Consider a 6-mile road between mile markers 4 and 10.
The PDF of the location of next accident is given by the diagram
below. Simulate the location X where the next accident will occur.

[x(x)
9
|
9
-
0 X
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18.4 Inversion Method RN [l 5 4 4

4 Inversion Method Example2 (cont.) & TONGISEM
( 0 forx < 4
é(x—él) for4d <x <7

Solution: Fy(x) = <

§+§(x—7) for7§x<10.

\ 1 for10 < x
Fylx)
*r~U|0,1].

B = 1 1

| °Ifr <= thenr ==(x —4), and
P o e o e el e e e ' 3 9

: hence x = 9r + 4.

| 1 2
| | ®Else, r = 3 + 5 (x — 7), and hence
T e e e i | q

| x ==09r +11).

1 — 2

. : 7% 10 ) LMo Eouss



18.4 Inversion Method RN [ i a A

L Example 2: Alternate Approach & TONGISEM

m In general, there can be many different ways of generating a random
number with the same distribution.

= Multiple random numbers from U[0,1] can also be used if generating
them is not too computationally intensive.

m For example 2, an alternate approach is as follows:

*Step 1: Generate 2 random numbers r;~U|[0,1] and r,~U[0,1].

°Step 2: If r; < g, x=3r,+4,elsex=3rn+7.
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18.4 Inversion Method

N Il F 45
L Inversion Method for Discrete RVs &2/ TONGJISEM
Pe(x3) 4
When simulating a discrete random
B variable X, with PMF and CDF
N ! given respectively by py(x) and
|
P [ e e e ; i Fy(x), from a single r~U|[0,1]
{ | E variable, find the smallest value x
|
A | such that Fy(x) = X5—., px(¥) = 7.
5 :
0 Xy Xy Xy Xa X¢ Xy

*E.g. if py(x) =p(1—p)*tforx=1,2,.. then Fy(x) =1 — (1 — p)*

°*So x = H:g:gﬂ, where |a| denotes the smallest integer greater than or

equal to a.
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18.5 Relationships Method TN [l i 54

L Principle of the Relationship Method &/ TONGJISEM

m The idea is to take advantage of some known relationship between
this random variable and one or more other random variables.

m Example: Simulating a binomial random variable.

m Binomial probability mass function gives the probability of k
successes in n Bernoulli trials.

m Simulate n Bernoulli trials, i.e., obtain n values of a random variable
which takes value 1 with probability p and value 0 with probability
1—np.

m Then count the number of successes in n trials, which gives a single
value of random number drawn from binomial distribution.
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18.6 Rejection Method TN [l i 54

L Principle of the Rejection Method &/ TONGJISEM

m This method can be used to generate random values from any
distribution that (1) takes values in a finite range, and (2) has a bounded
PDF/PMF (i.e., PDF/PMF does not go to infinity at any value of the
random variable).

mLet X be a random variable that follows these two conditions; let ¢ be
the maximum value taken by its PDF fy(x); and let all values of X with
non-zero PDF be contained in interval [a, b].

m Use the following three step procedure to generate random values from
distribution fyx(x) using the rejection method.

* Step 1: Enclose the PDF fy(x) in the smallest rectangle that fully
contains it and whose sides are parallel to the x and y axes. This
rectangle will have a width (b — a) and height c.

]
CAMEA LN AAcSE  EQUIS

sEsmreMBAzE A E M




18.6 Rejection Method TN [l i 555

L Procedure of Inversion Method &) roneasem

/x(."o)

(.\'2. }'2)

a Xn xU . . (!.T X

* Step 2: Use two random numbers, r{,r,~U|[0,1], and transform using a, b,
and c to get a point (x4,x,) = (a + r;(b — a), r,c) inside the rectangle.

* Step 3: If this point is below the PDF, the x-coordinate of this point gives
you the simulated value of random variable X. Otherwise, reject this
point and return to step 2.
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18.6 Rejection Method TN ] i A

LRejection Method Example &2/ TONGJISEM

mlLet us look at the highway accident example again.

* Step 1: This PDF can be enclosed in a rectangle whose length is

(b—a) = (10— 4) = 6 and height is c = =.
* Step 2: Let (ry,1,) = (0.34,0.81) be the two random numbers being

drawn from U[0,1]. The corresponding point in the rectangle will be

(g, 1) = (4 + 6 * 0.34,0.81 * g) = (6.04,0.18).

* Step 3: Since this point is above
> (6.04,0.11) it will be rejected. Let
> the new point be (ry,r,) = (0.41,0.15)
> leading to (x4,y;) = (6.46,0.033), so
> the sample value x = 6.46 will be accepted.
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18.6 Rejection Method
L Rejection Method: Pros & Cons &2/ TONGJISEM

N il 24

m The rejection method is very general.

m As long as the PDF satisfies the two aforementioned conditions,
this method can be used.

m The PDF does not need to have a closed form mathematical
expression either.

m The downside is that sometimes many rejections are needed
before simulating each random value.

m The expected number of trials until an accepted value is found
equals c(b — a) (Why?).
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18.7 Method of Approximations RN [l i 5 8

% Principles and typical examples &2/ TONGJISEM

m Approximate a complicated distribution using another which is easier
to simulate using one of the earlier three methods.

m Some approximations can be sophisticated.

mE.g. Simulating a normal distribution by applying Central Limit
Theorem (CLT).

m Generate k random variables, each from U[0,1] and take sum. Z =
rLt T+ o+ 1.

= Each r variable has mean = = and standard deviation = —.
2 V12
m SO mean of Z is S and standard deviation is \/%

]
CAMEA LN AAcSE  EQUIS

sEsmreMBAzE A E M




18.7 Method of Approximations RN [ ¢ 25 4

L Applications and Extensions & TONGIISEM
k

m For large values of k, —kz is approximately normal with mean 0 and
&
standard deviation 1.
m S0 a random variable X from any normal distribution with mean y and

k

Z__
standard deviation o can be generated as u + (—:) .
12

m Another common type of approximation is to approximate a
complicated CDF using a simpler CDF (such as a piecewise linear CDF)
and then

° using inversion method, or
° using a rejection method.
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18.8 Method Comparison \ Il 2 5

=27 TONGJISEM

m We have seen 4 different methods so far (Inversion, Relationships,
Rejection, Approximations) for generating random numbers from a
given probability distribution.

m Obviously they have some pros and cons each.

m Compare the four methods and list as many pros and cons as you
can.

T m4-Minute Activity: Spend 2 minutes by yourself and then discuss for 2
% minutes with your neighbors.

m Be prepared to explain your answer to the class.
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18.8 Method Comparison
L Comparison of Random Number Generation Methods

- Simple and intuitive - Inverse CDF often - Exponential distribution
principle not available in - Geometric distribution
eaErea | Exact if the inverse CDF is  closed form - Any distribution with a
available - Numerical closed-form inverse CDF
Method - Works well for many inversion can be
standard distributions computationally
expensive
- Efficient by exploiting - Limited to cases - Generating Binomial from
known relationships with known Bernoulli
between distributions relationships - Generating Chi-square, t,
(IRl - Avoids complex - Not a universal or F distributions from
mathematics approach Normal

- Easy to implement once
relation is known
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18.8 Method Comparison

() P 225

L Comparison of Random Number Generation Methods ( ) s> TONGJISEM
- Does not require - Can be inefficient if - Normal distribution (via Box-
inverse CDF or closed rejection rate is Muller or rejection varlants)
Rejection form high - Gamma distribution
Method - Flexible for complex or - Requires a suitable - Complicated PDFs without
nonstandard proposal distribution closed forms
distributions
- Useful when exact - Introduces - Approximating Normal via
simulation is infeasible approximation error  Central Limit Theorem (CLT)
. . - Flexible, can be - Accuracy depends on - Approximating complex CDFs
APProXimatio e et R e approximation with piecewise linear functions
n Method methods technique and - Simulation in large-scale Monte
- Often faster in practice parameters Carlo where efficiency matters
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Chapter 18 Simulation Generating Random Numbers ¢ Brief summary Td,iﬁ,fii

Objective :

Key Concepts :
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